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Abstract

Whole slide imaging (WSI) is an emerging imaging technology that has the poten-

tial to revolutionize the field of digital pathology, but its acceptance in computer-aided

diagnostics is hindered by a relative scarcity of labeled data sets compared to those

obtained using traditional imaging technologies. Exhaustive manual labeling and an-

notation are significantly time-consuming due to the sheer size of the images, and

require technical expertise not readily available among the general population. The

use of artificial intelligence for such tasks, on the other hand, suffers from low confi-

dence in results and a lack of transparency as perceived by the medical community.

To alleviate these problems, this work presents an unsupervised segmentation al-

gorithm which draws on sparse representation theory and cluster analysis to provide

annotations with greater algorithmic transparency than traditional neural networks.

The algorithm learns a sparse dictionary representation for all overlapping patches

in an image and partitions the dictionary into multiple sub-dictionaries based on

atom utilization correlations, allowing one to see exactly what features the algo-

rithm is searching for in the segmentation process. The extracted image patches are

then reconstructed using each sub-dictionary individually and classified per the best-

performing dictionary, with performance gauged by a weighted sparsity and recon-

struction error metric. The algorithm’s functionality is demonstrated by application

to glomerulus regions extracted from pre-annotated mouse kidney whole slide images

and compared to results obtained through traditional neural network segmentation

techniques.
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